从零到负一

一文搞懂C语言回调函数

2017/02/09

什么是回调函数

我们先来看看百度百科是如何定义回调函数的:

回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。

假设我们要使用一个排序函数来对数组进行排序,那么在主程序(Main program)中,我们先通过库,选择一个库排序函数(Library function)。但排序算法有很多,有冒泡排序,选择排序,快速排序,归并排序。同时,我们也可能需要对特殊的对象进行排序,比如特定的结构体等。库函数会根据我们的需要选择一种排序算法,然后调用实现该算法的函数来完成排序工作。这个被调用的排序函数就是回调函数(Callback function)。

要实现回调函数,最关键的一点就是要将函数的指针传递给一个函数,然后这个函数就可以通过这个指针来调用回调函数了。注意,回调函数并不是C语言特有的,几乎任何语言都有回调函数。在C语言中,我们通过使用函数指针来实现回调函数。那函数指针是什么?不着急,下面我们就先来看看什么是函数指针。

什么是函数指针

函数指针也是一种指针,只是它指向的不是整型,字符型而是函数。在C中,每个函数在编译后都是存储在内存中,并且每个函数都有一个入口地址,根据这个地址,我们便可以访问并使用这个函数。函数指针就是通过指向这个函数的入口,从而调用这个函数。

函数指针的使用

函数指针的定义

函数指针虽然也是指针,但它的定义方式却和其他指针看上去很不一样,我们来看看它是如何定义的:

1
2
3
4
5
6
/* 方法1 */
void (*p_func)(int, int, float) = NULL;

/* 方法2 */
typedef void (*tp_func)(int, int, float);
tp_func p_func = NULL;

这两种方式都是定义了一个指向返回值为 void 类型,参数为 (int, int, float) 的函数指针。第二种方法是为了让函数指针更容易理解,尤其是在复杂的环境下;而对于一般的函数指针,直接用第一种方法就行了。
如果之前没见过函数指针,可能会觉得函数指针的定义比较怪,为什么不是 void ()(int, int, float) *p_func 而是 void (*p_func)(int, int, float) 这种形式?这个问题我也不知道,也没必要纠结,花点时间理解下它与普通指针的区别,实在不行就先记住它的形式。

函数指针的赋值

在定义完函数指针后,我们就需要给它赋值了我们有两种方式对函数指针进行赋值:

1
2
3
void (*p_func)(int, int, float) = NULL;
p_func = &func1;
p_func = func2;

上面两种方法都是合法的,对于第二种方法,编译器会隐式地将 func_2void ()(int, int, float) 类型转换成 void (*)(int, int, float) 类型,因此,这两种方法都行。想要了解更详细的说明,可以看看下面这个stackoverflow的链接

使用函数指针调用函数

因为函数指针也是指针,因此可以使用常规的带 * 的方法来调用函数。和函数指针的赋值一样,我们也可以使用两种方法:

1
2
3
4
5
/* 方法1 */
int val1 = p_func(1,2,3.0);

/* 方法2 */
int val2 = (*p_func)(1,2,3.0);

方法1和我们平时直接调用函数是一样的,方法2则是用了 * 对函数指针取值,从而实现对函数的调用。

将函数指针作为参数传给函数

函数指针和普通指针一样,我们可以将它作为函数的参数传递给函数,下面我们看看如何实现函数指针的传参:

1
2
3
4
5
6
7
8
9
10
11
12
/* func3 将函数指针 p_func 作为其形参 */
void func3(int a, int b, float c, void (*p_func)(int, int, float))
{
(*p_func)(a, b, c);
}

/* func4 调用函数func3 */
void func4()
{
func3(1, 2, 3.0, func_1);
/* 或者 func3(1, 2, 3.0, &func_1); */
}

函数指针作为函数返回类型

有了上面的基础,要写出返回类型为函数指针的函数应该不难了,下面这个例子就是返回类型为函数指针的函数:

1
2
3
4
void (* func5(int, int, float ))(int, int)
{
...
}

在这里, func5(int, int, float) 为参数,其返回类型为 void (*)(int, int) 。在C语言中,变量或者函数的声明也是一个大学问,想要了解更多关于声明的话题,可以参考我之前的文章 - C专家编程》读书笔记(1-3章)。这本书的第三章花了整整一章的内容来讲解如何读懂C语言的声明。

函数指针数组

在开始讲解回调函数前,最后介绍一下函数指针数组。既然函数指针也是指针,那我们就可以用数组来存放函数指针。下面我们看一个函数指针数组的例子:

1
2
3
4
5
6
/* 方法1 */
void (*func_array_1[5])(int, int, float);

/* 方法2 */
typedef void (*p_func_array)(int, int, float);
p_func_array func_array_2[5];

上面两种方法都可以用来定义函数指针数组,它们定义了一个元素个数为5,类型是 void (*)(int, int, float) 的函数指针数组。

回调函数

我们前面谈的都是函数指针,现在我们回到正题,来看看回调函数到底是怎样实现的。下面是一个四则运算的简单回调函数例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include <stdio.h>
#include <stdlib.h>

/****************************************
* 函数指针结构体
***************************************/
typedef struct _OP {
float (*p_add)(float, float);
float (*p_sub)(float, float);
float (*p_mul)(float, float);
float (*p_div)(float, float);
} OP;

/****************************************
* 加减乘除函数
***************************************/
float ADD(float a, float b)
{
return a + b;
}

float SUB(float a, float b)
{
return a - b;
}

float MUL(float a, float b)
{
return a * b;
}

float DIV(float a, float b)
{
return a / b;
}

/****************************************
* 初始化函数指针
***************************************/
void init_op(OP *op)
{
op->p_add = ADD;
op->p_sub = SUB;
op->p_mul = &MUL;
op->p_div = &DIV;
}

/****************************************
* 库函数
***************************************/
float add_sub_mul_div(float a, float b, float (*op_func)(float, float))
{
return (*op_func)(a, b);
}

int main(int argc, char *argv[])
{
OP *op = (OP *)malloc(sizeof(OP));
init_op(op);

/* 直接使用函数指针调用函数 */
printf("ADD = %f, SUB = %f, MUL = %f, DIV = %f\n", (op->p_add)(1.3, 2.2), (*op->p_sub)(1.3, 2.2),
(op->p_mul)(1.3, 2.2), (*op->p_div)(1.3, 2.2));

/* 调用回调函数 */
printf("ADD = %f, SUB = %f, MUL = %f, DIV = %f\n",
add_sub_mul_div(1.3, 2.2, ADD),
add_sub_mul_div(1.3, 2.2, SUB),
add_sub_mul_div(1.3, 2.2, MUL),
add_sub_mul_div(1.3, 2.2, DIV));

return 0;
}

这个例子有点长,我一步步地来讲解如何使用回调函数。

第一步

要完成加减乘除,我们需要定义四个函数分别实现加减乘除的运算功能,这几个函数就是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/****************************************
* 加减乘除函数
***************************************/
float ADD(float a, float b)
{
return a + b;
}

float SUB(float a, float b)
{
return a - b;
}

float MUL(float a, float b)
{
return a * b;
}

float DIV(float a, float b)
{
return a / b;
}

第二步

我们需要定义四个函数指针分别指向这四个函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/****************************************
* 函数指针结构体
***************************************/
typedef struct _OP {
float (*p_add)(float, float);
float (*p_sub)(float, float);
float (*p_mul)(float, float);
float (*p_div)(float, float);
} OP;

/****************************************
* 初始化函数指针
***************************************/
void init_op(OP *op)
{
op->p_add = ADD;
op->p_sub = SUB;
op->p_mul = &MUL;
op->p_div = &DIV;
}

第三步

我们需要创建一个“库函数”,这个函数以函数指针为参数,通过它来调用不同的函数:

1
2
3
4
5
6
7
/****************************************
* 库函数
***************************************/
float add_sub_mul_div(float a, float b, float (*op_func)(float, float))
{
return (*op_func)(a, b);
}

第四步

当这几部都完成后,我们就可以开始调用回调函数了:

1
2
3
4
5
6
/* 调用回调函数 */ 
printf("ADD = %f, SUB = %f, MUL = %f, DIV = %f\n",
add_sub_mul_div(1.3, 2.2, op->p_add),
add_sub_mul_div(1.3, 2.2, op->p_sub),
add_sub_mul_div(1.3, 2.2, MUL),
add_sub_mul_div(1.3, 2.2, DIV));

简单的四部便可以实现回调函数。在这四步中,我们甚至可以省略第二步,直接将函数名传入“库函数”,比如上面的乘法和除法运算。回调函数的核心就是函数指针,只要搞懂了函数指针再学回调函数,那真是手到擒来了。

总结

本文主要讲了如何使用函数指针和回调函数。回调函数的核心就是函数指针,因此我花了大量篇幅讲解函数指针。对于回调函数的实现,我给出了一个例子,希望这个例子能给你帮助。回调函数很重要,如果连它都不会,C语言真不算入门了。当然了,即使会了它,也不要骄傲,因为C语言还有太多的东西需要我们去学习、实践。

CATALOG
  1. 1. 什么是回调函数
  2. 2. 什么是函数指针
  3. 3. 函数指针的使用
    1. 3.1. 函数指针的定义
    2. 3.2. 函数指针的赋值
    3. 3.3. 使用函数指针调用函数
    4. 3.4. 将函数指针作为参数传给函数
    5. 3.5. 函数指针作为函数返回类型
    6. 3.6. 函数指针数组
  4. 4. 回调函数
    1. 4.1. 第一步
    2. 4.2. 第二步
    3. 4.3. 第三步
    4. 4.4. 第四步
  5. 5. 总结